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Abstract  

Background: Quantitative estimation of toxicokinetic variability in the human population is a 

persistent challenge in risk assessment of environmental chemicals. Traditionally, inter-

individual differences in the population are accounted for by default assumptions or, in rare 

cases, are based on human toxicokinetic data. 

Objectives: To evaluate the utility of genetically diverse mouse strains for estimating 

toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) 

metabolism as a case study. 

Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 

inbred and one hybrid mouse strains to calibrate and extend existing physiologically-based 

pharmacokinetic (PBPK) models. We added one-compartment models for glutathione 

metabolites and a two-compartment model for dichloroacetic acid (DCA). A Bayesian 

population analysis of interstrain variability was used to quantify variability in TCE metabolism. 

Results: Concentration-time profiles for TCE metabolism to oxidative and glutathione 

conjugation metabolites varied across strains. Median predictions for the metabolic flux through 

oxidation was less variable (5-fold range) than that through glutathione conjugation (10-fold 

range). For oxidative metabolites, median predictions of trichloroacetic acid production was less 

variable (2-fold range) than DCA production (5-fold range), although uncertainty bounds for 

DCA exceeded the predicted variability. 

Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide 

useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower 

doses more relevant to environmental exposures, mouse population-derived variability estimates 

for TCE metabolism closely matched population variability estimates previously derived from 
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human toxicokinetic  studies  with TCE, highlighting the  utility of  mouse  interstrain  metabolism  

studies for addressing toxicokinetic variability.    

  



 

 

         

         

        

    

         

        

          

   

      

    

        

      

      

        

      

            

      

      

        

  

Introduction  

TCE is not only an important industrial chemical and a ubiquitous environmental contaminant, 

but also there are complex scientific issues related to its metabolism, the modes, targets and 

types of toxicity, and its potential to be a human health hazard. The U.S. Environmental 

protection Agency (EPA) and the International Agency for Research on Cancer concluded that 

TCE is carcinogenic to humans (Chiu et al. 2013; Guha et al. 2012). While the cancer hazard 

classification of TCE has been agreed upon by several expert panels, scientific challenges in the 

interpretation of the dose-response assessment remain. Major issues include the extent of TCE 

metabolism through cytochrome P450-mediated oxidation and GST-mediated glutathione 

conjugation pathways (Lash et al. 2000), and the inter-individual differences in formation of 

liver- and kidney-toxic metabolites of TCE (Chiu et al. 2009). 

Based on the recommendations of the National Research Council (National Research Council 

2006), a physiologically-based pharmacokinetic model (PBPK) was used to derive candidate 

reference dose and concentration values for non-cancer human health effects of TCE. A 

comprehensive PBPK model of Hack et al. (2006) was updated using the Bayesian framework 

for estimation and characterization of the PBPK model parameter uncertainties (Chiu et al. 2009; 

Evans et al. 2009). This model was used for the dose-response assessment in EPA’s TCE 

toxicological review (U.S. EPA 2011), specifically for quantitative dose extrapolation across 

routes of exposure, across species, and within species. This latter extrapolation – addressing 

toxicokinetic variability in the human population – was only possible because of the availability 

of individual human data on TCE toxicokinetics. 
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Characterizing variability remains  a  key risk assessment  challenge  (Zeise  et  al. 2013), and there  

are  few  chemicals  for which sufficient  individual  human toxicokinetic  data  are  available  to 

conduct  population PBPK  modeling.  Even for TCE, the  data  are  limited to healthy male human 

volunteers, largely of  European descent.  Furthermore, the  data  on glutathione  conjugation was  

much more  limited, and questions  have  been raised as  to its  reliability for making quantitative  

estimates  of  the  internal  dose. While  it  is  unlikely that  sufficient  additional  human toxicokinetic  

data  will  become  available  in the  future  to refine  estimates  of  human toxicokinetic  variability,  

either for TCE  or for other chemicals, new  experimental  approaches  using genetically diverse  

mouse  populations  offer a  potential  alternative  for evaluating  variability. In fact, interstrain  

differences  in TCE  metabolism  have  been quantified  using a  multistrain  panel  of  inbred mice  

(Bradford et al. 2011).   

TCE offers an attractive case study for examining the utility of the mouse population for 

characterizing variability. We show that significant strain and time effects are observed in 

metabolism of TCE. Next, we calibrated and further refined PBPK models of TCE (Evans et al. 

2009; Hack et al. 2006). One-compartment models were added for S-(1,2-

dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and a two-

compartment model for DCA. Finally, a population model for interstrain variability was added to 

quantify the extent of variability in metabolism through oxidation and glutathione conjugation. 

Materials  and  Methods  

Animals, treatments and data availability   

Data used for the analyses presented herein were previously reported (Bradford et al. 2011; Kim 

et al. 2009b). Additional unpublished data from Bradford et al. (2011) study in AKR/J or 
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WSB/EiJs  strains  are  provided as  Supplemental  Material, Table  S1. Males  (aged 7-9 weeks) 

from  these  16 inbred and one  hybrid (B6C3F1/J) mouse  strains  (Jackson Laboratory, Bar Harbor, 

ME) were  gavaged  with TCE  (2100 mg/kg) in corn oil  (10 ml/kg) and sacrificed at  2, 8 and 24 

hrs  after treatment. Concentrations  of  DCA, TCA, DCVG  and DCVC in mouse  serum  were  

determined as  detailed  in (Bradford et  al. 2011; Kim  et  al. 2009a). All studies  were  conducted 

with approval  of  the  Institutional  Animal  Care  and Use  Committee, the  animals  were  treated 

humanely and with regard for alleviation of suffering.  

Analysis of variance (ANOVA) modeling of strain and time effects on concentration-time   
profiles of TCE metabolites in mouse serum  

Individual animal-level serum TCE metabolite data was examined in a series of power 

transformations across a grid from 0 (the log transformation) to 1 (untransformed). The 

transformation y_new=y^0.25 produced the closest average fit to normality across the 

metabolites, with no influential outliers. Histograms of the transformed values and quantile-

quantile plots for each TCE metabolite are shown in Supplemental Material, Figure S1. 

Analysis of variance (ANOVA) models were fit to the data for strain as a factor within each time 

point, and with strain and time point as factors in an overall model, with time point added first to 

the ANOVA model. An approximate “heritability” was computed as the portion of variation 

attributable to strain, which was determined using the partial R2. Statistical tests involving each 

metabolite were treated as separate hypotheses of independent interest, and thus not subjected to 

multiple comparison control. 
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Monte Carlo analysis of concentration-time profiles of TCE metabolites in mouse serum   

Monte Carlo analysis of the data was carried out using the TCE PBPK model (Hack et al. 2006) 

with slight modifications (Supplemental Material, Figure S2). The model was modified to 

incorporate production of DCVG. DCVG clearance was described as metabolism to DCVC. The 

production of DCA was also altered. In the original model (Hack et al. 2006), DCA was only the 

product of direct metabolism of TCE. In the modified model, DCA is the product of both direct 

metabolism of TCE, as well from the enzymatic dehalogenation of TCA (Kim et al. 2009b). 

Model parameters are given in Supplemental Material, Table S2. All other parameters were fixed 

to the mean posterior value reported in (Hack et al. 2006). Monte Carlo analysis was carried out 

by varying the metabolism and excretion of TCE, TCA, DCA, DCVG and DCVC while holding 

all other parameters constant (an approach supported by a sensitivity analysis, discussed later, 

that confirmed the lack of sensitivity of PBPK model calibration to these parameters). Values for 

the metabolism were generated randomly from a normal distribution in acslX (Aegis 

Technologies, Huntsville, AL). The Monte Carlo simulation was run for 100 iterations. 

Model refinement and Bayesian approach to estimating interstrain variability    in 
concentration-time profiles of TCE metabolites in mouse serum  

After completing the preliminary analysis, the additional DCVG, DCVC, and DCA sub-models 

were added to the Evans et al. (2009) update to the Hack et al. (2006) TCE PBPK model. One-

compartment models were used for DCVG and DCVC, and, based on (Kim et al. 2009b), a two-

compartment model was used for DCA. Complete mathematical details and code are provided in 

Supplemental Material (see Supplemental Material, Details of the Bayesian PBPK modeling of 

TCE and its metabolites; and Supplemental Material, PBPK model code). 
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A  hierarchical  Bayesian population approach was  used, as  before, to estimate  model  parameters  

and their uncertainty and variability (Bois  2000; Evans  et  al. 2009; Hack et  al. 2006).  This  

involves  specification of  the  hierarchical  population statistical  model, specification of  prior 

distributions  for model  and population parameters, estimation of  the  posterior distributions  for 

model  parameters  using Markov chain Monte  Carlo (MCMC), and evaluation of  convergence, 

the  consistency of  estimated parameters, and model  fit.  Parameter scaling relationships  and prior 

distributions, similar to  those  previously reported in Chiu et  al. (2009)  and Evans  et  al. (2009), 

are  provided  in Supplemental  Material, Tables  S3-S6. The  likelihood functions  used in the  

Bayesian statistical analysis are described in Supplemental  Material, Methods.    

Previously reported population statistical models for TCE PBPK modeling (Chiu et al. 2009; 

Evans et al. 2009; Hack et al. 2006) did not include variability between mouse strains, and the 

analyses only characterized variability between studies. Because most of the previously reported 

data available for PBPK modeling involved only the B6C3F1 strain, most of this inter-study 

variability was due to variation in laboratory conditions or among studies. In order to separately 

characterize variation between strains, the following approach was used. For studies other than 

Bradford et al. (2011), only data using the B6C3F1 strain were included. For the Bradford et al. 

(2011) study, the B6C3F1 data (Kim et al. 2009b) were excluded. Inter-study variability (θ) in 

PBPK model parameters was characterized using a population model, and included for all 

studies. A population model for interstrain variability was constructed by adding interstrain 

scaling parameters (ψ) that are equal to the ratio between the PBPK model parameter for a 

specific strain and the PBPK model parameter for the B6C3F1 strain. Prior distributions for 

interstrain variability are provided in Supplemental Material, Table S5. All other aspects of the 

population statistical model were as reported elsewhere (Chiu et al. 2009; Evans et al. 2009). 
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Sensitivity analyses  reported in (U.S. EPA  2011)  showed that  the  PBPK  model  calibration was  

not  sensitive  to many parameters.  Therefore, most  of  the  physiological  parameters  and partition 

coefficients for which there were in vitro  estimates available were fixed to their baseline values. 

The  remaining parameters  were  estimated and evaluated using the  previously reported approach 

(Chiu et al. 2009; Evans et al. 2009).   

Results  

ANOVA modeling of strain and time effects on serum concentration-time profiles of TCE  
metabolites  

The TCE metabolite data were examined for evidence of strain and time effects using a fixed-

effect two-way ANOVA model, with partial R2 used to describe the portion of variability 

attributable to “strain” and “time”. For strain effects, the partial R2 may be viewed as serving as 

an index of heritability, although this term is used here in an approximate sense, due to the non-

random sampling of strains. The overall effects of strain in the two-way model (Table 1) were 

highly significant for DCVG (p = 9 x 10-5), and not significant for TCA, DCA and DCVC. Time 

effects were significant for TCA, DCA, and DCVG, but not significant for DCVC. Overall, 

concentration-time profiling in a multistrain experimental design illustrated the importance of 

both strain and time on TCE metabolite concentrations. The “heritability” (partial R2 attributable 

to strain) estimates ranged from 0.18 to 0.49 for all time periods (Table 1). 

Interstrain variability in serum concentration-time profiles of TCE metabolites    

We examined how well the Hack et al. (2006) TCE PBPK model corresponds to the 

concentration-time profiles of oxidative TCE metabolites in serum of B6C3F1/J mice, strain 

used in development of this model. A good fit was observed for the time-course TCA and DCA 
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concentrations  (Figure  1, top panel). When compared with the  kinetic  data  across  the  strains  

(Figure  1, bottom  panel), the  B6C3F1/J  strain  showed  a  peak concentration of  TCA  near the  

bottom  of  the  distribution at  2 and 8 hours  post  dosing,  while  falling near the  middle  of  the  

distribution at  24 hours. For DCA, the  B6C3F1/J  strain  was  above  the  distribution of  plasma  

concentration at  2 hours  while  falling near the  middle  at  8 and 24 hours  post  dosing. The  Monte  

Carlo  analysis  of  the  multistrain  data  (Supplemental  Material, Figure  S3) using the  modified 

Hack et  al. (2006)  model  was  reasonably consistent  with the  range  of  measured concentrations  of  

TCA  at  8 and 24 hours  while  most  measured values  were  below  the  distribution at  2 hours. For 

DCA, the  simulations  over-predicted the  observed data  by about  a  factor of  two. The  spread of  

measured concentrations  for DCVG  were  captured by the  Monte  Carlo analysis  at  2 hours, but  

with approximately 50% of  the  strains  falling below  the  distribution of  the  simulations. The  

model  failed to capture  the  rapid clearance  of  DCVG  with all  of  the  measured concentrations  at  8  

hours  falling below  the  simulations. For DCVC, the  Monte  Carlo simulation was  able  to 

reasonably capture  both the  distribution and shape  of  the  measured data  for most  strains  at  all  

three time-points.  

Model refinement and Bayesian estimates of interstrain variability in serum concentration-    
time profiles of TCE metabolites  

Because the Hack model and Monte Carlo simulations did not adequately capture the extent of 

interstrain variability in serum concentration-time profiles of TCE metabolites, we conducted 

additional model refinement using the Evans et al. (2009) update to the Hack et al. (2006) model 

(Figure 2), and performed Bayesian population modeling. Physiological models were added for 

TCA and TCOH, and a 2-compartment model was added for DCA. For the Bayesian population 

modeling eight independent MCMC chains were run, each to 160,000 iterations, with the first 
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half  discarded as  “burn-in”  iterations. Values  of  the  convergence  diagnostic  “R”  were  <  1.07 for 

all  parameters, indicating convergence  (less  than 7% change  would be  expected with further 

simulation).  Only every 500th  iteration was  retained to reduce  autocorrelation.  Therefore, a  total  

of (8 ×80,000 ÷ 500) = 1,280 parameter samples were available for analysis.       

Posterior distributions are summarized in Supplemental Material, Table S6. Posterior 

distributions for the previously developed TCE, TCA, and TCOH/TCOG sub-models were 

consistent with analyses of Chiu et al. (Chiu et al. 2009) and Evans et al. (Evans et al. 2009). All 

posteriors were well within the truncation range of the priors, so the priors were not overly 

constraining. Furthermore, the data appeared to be informative as to the parameters for the new 

DCVG, DCVC, and DCA sub-models, as evidenced by the posteriors being significantly 

narrower than the priors. 

Figure 3 demonstrates an overall comparison of model predictions and observed data, showing 

that the majority of predictions are within 3-fold of the data. Individual time-courses are 

provided in Supplemental Material, Figures S4-S7, with predictions for the B6C3F1/J strain 

(Kim et al. 2009b) and two representative inbred strains DBA/2J and KK/HIJ (Bradford et al. 

2011) depicted in Figures 4 and 5, respectively. We note that the most influential model 

refinements leading to improved predictions were the use of a two-compartment model for DCA 

and the change in glutathione-related parameters, specifically both increased production and 

increased clearance of DCVG. 

Overall, model predictions are consistent with metabolism of TCE occurring predominantly by 

oxidation, as compared to glutathione conjugation, and with more TCA produced from oxidation 
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as  compared to DCA. Estimates  of  metabolism  parameters  and metabolic  fluxes  for the  

B6C3F1/J  mice are shown in Table 2.   

Figure 6 shows PBPK model predictions for the overall flux of TCE metabolism across mouse 

strains. Figure 6A shows that TCA showed less interstrain variability (a 2-fold range) than DCA 

(a 5-fold range), though the uncertainty bounds for DCA were wider than the predicted range of 

variability. All strains were estimated to produce significantly more TCA than DCA; median 

estimates for their ratio varied from 11 to 53 (a 5-fold range of variability). Compared to 

B6C3F1/J, median predictions for most other strains estimated less TCA and DCA production, 

but with a higher TCA/DCA ratio. Figure 6B shows results for the oxidative and glutathione 

conjugation pathways. Less variation was predicted for oxidative metabolism (5-fold range 

across strains) as compared to glutathione conjugation (10-fold). Interestingly, in terms of total 

oxidative metabolism, all but two strains (MOLF/EiJ and 129S1/SvlmJ) were within 2-fold of 

each other, probably a result of blood-flow-limited metabolism. The two “outlier” strains were 

predicted to have notably less flux through this pathway. The B6C3F1/J strain was predicted to 

have more glutathione metabolism than other strains, and median estimates for the 

oxidation/conjugation ratio was lower than all but the 129S1/SvlmJ strain. Still, all strains were 

estimated to have a greater metabolic flux through oxidation as compared to glutathione 

conjugation; median estimates for their ratio varied about 30-fold (from 620 to 19,000). 

Discussion  

One of the biggest gaps in risk assessment, as identified by the National Research Council 

(National Research Council 2009), is that inter-individual variability is not being addressed at all 

(in animals), or incompletely (in epidemiological studies). There is a crucial need for the 

12
 



 

 

      

       

     

       

          

     

      

      

             

      

       

          

         

    

           

   

 

development  of  approaches  to estimate  the  quantitative  impact  of  human inter-individual  

variability in personal  risk from  chemical  exposures  (Zeise  et  al. 2013), and with adequate  

human data, a  number of  statistical  and computational  tools  are  available  to toxicologists  and 

risk assessors (Dorne et al. 2012).     

However, there are no experimental data with which to derive such population distributions for 

most toxicants. Some studies have been performed using data on pharmaceuticals (Hattis and 

Lynch 2007), but the variability in individual responses to drugs, which have generally similar 

pharmacokinetic properties, is unlikely to encompass the extent of variability in responses to 

environmental agents (Clewell et al. 2004). Epidemiological data are also of limited use because 

the variation in response is confounded by the variability in exposure. Combined in vitro and 

computational approaches have been proposed to characterize toxicokinetic variability (Wetmore 

et al. 2013), but these are limited to first-order kinetics and characterization of variability in 

parent compound dosimetry. Other in vitro approaches to evaluating the extent of and molecular 

mechanisms for inter-individual variability using genetically diverse cell lines have also been 

proposed (Lock et al. 2012; O'Shea et al. 2011). However, these and other in vitro approaches 

that do not capture the complexity of whole body toxicokinetics would not be successful for 

compounds such as TCE. Indeed, the metabolism of TCE is complex, with multiple metabolizing 

tissues and inter-organ transport, and toxicity is largely attributed to metabolites rather than the 

parent compound. As a consequence of these data limitations, current approaches are largely 

limited to applying default uncertainty factors to account for uncertainty associated with within-

species variability (Stedeford et al. 2007). 
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One possibility to fill this gap is by characterizing the nature and quantitative extent of human 

variability through studies in the mouse model of the human population (Rusyn et al. 2010). 

Accordingly, we hypothesized that by using data from a mouse population we can build kinetic 

models to account for inter-individual variability in metabolism from the point of view of genetic 

variability. Specific focus was on PBPK modeling to generate information and kinetic 

parameters that may be used for verifying the models used in TCE risk assessment (Evans et al. 

2009; Hack et al. 2006). In addition, a Bayesian modeling approach was used for uncertainty and 

sensitivity analysis (Chiu et al. 2009). 

We found considerable variability in TCE metabolism across mouse strains (Bradford et al. 

2011) and our novel analytical techniques offer data on additional key metabolites (Kim et al. 

2009b) that were used to extend existing TCE PBPK models. While the (Hack et al. 2006) model 

accurately describes the kinetics of TCA in the B6C3F1/J mouse, we found that it only partially 

(mostly at the lower range) accounts for the variability in the toxicokinetics of TCE observed in a 

genetically diverse population of mouse strains. A hierarchical Bayesian approach was more 

successful in estimating the population variability. Using this approach, variability in the rate of 

production of metabolites (TCA, DCA, DCVG) was seen across strains. All strains were 

predicted to have a greater metabolic flux through oxidation as compared to glutathione 

conjugation, but with 31-fold variability in the ratio across strains (Figure 6B). While most 

strains had predicted total oxidative metabolism within a narrow 2-fold range, likely a result of 

blood-flow-limited metabolism, two strains were predicted to have notably less metabolism by 

this pathway. The metabolic flux through glutathione conjugation had a greater range of 

variability (10-fold) across strains. 
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These  results  have  a  number of  limitations.  First, the  confidence  intervals  in some  cases  are  quite  

wide, particularly for DCA.  Because  there  is  some  confounding between a  low  rate  of  production 

and rapid clearance  of  DCA, both of  which  could account  for the  low  levels  of  DCA  in blood, 

DCA  dosing would undoubtedly reduce  the  associated uncertainty.  Additionally, it  should be  

noted that  the  predominant  oxidative  metabolite  is  TCOH, which was  not  measured in our 

studies.  Thus, estimating the  balance  of  oxidation to TCOH  in these  strains  relied on information  

from  previous  studies  of  B6C3F1 mice, which introduces  uncertainty due  to inter-study 

variation.  Finally, many measurements  of  DCA, DCVC, and DCVG  were  near the  detection 

limit, where analytical errors are larger, so the precision was limited by experimental variation.  

We also posit that the “mouse variability distribution” may be further extrapolated to humans 

using the PBPK model and the resulting human variability distribution may be compared with 

available data on the variability of the human pharmacokinetics of TCE to determine whether the 

mouse derived distribution is consistent with the human evidence. Because of previous work 

developing human population PBPK models (Bois 2000; Chiu et al. 2009; Hack et al. 2006) a 

direct comparison is possible, for instance, between the extent of population variability predicted 

in the human population based on individual human data, and that predicted in a mouse based on 

multiple strain data. As shown in Table 3, where the ratio of 95th percentile and median in 

humans were compared with those for mouse strains, there was a remarkable correspondence 

between the predictions when evaluated at low doses more relevant to environmental exposures. 

Specifically, both the mouse and human-based analyses predicted the general trend the 

variability in oxidative metabolism is low (about 1.1-fold between the 95th percentile and the 

median), variability in TCA production is greater (about 2-fold), and variability in glutathione 

conjugation is the greatest (about 7-fold). Moreover, central estimates were within 20% of each 
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other, with the  confidence  intervals  based on mouse  data  completely encompassing  those  based 

on human data.  The  difference  in confidence  intervals  may simply reflect  the  larger  number of  

individuals  in the  human analysis  (n  =  42) as  compared to the  number of  strains  (n  =  17).  It  is  the  

combination of  using a  PBPK  model, data  from  the  population-wide  experimental  model, and 

statistically rigorous  parameter estimation that  gives  this  approach its  predictive  power.  These 

results  are  consistent  with estimates  derived from  previously published analyses  based on 

individual human data.   

Thus, this case study demonstrates the feasibility of using mouse population models to 

characterize the nature and extent of human inter-individual variability in pharmacokinetics for 

toxicologically relevant measures of internal dose – a similar approach that could be applied to 

other chemicals. As characterization of pharmacokinetic variability is a necessary precursor to 

characterization of pharmacodynamic variability, this work considerably extends the utility of 

the PBPK modeling tools and Bayesian population analysis to population-wide data, both in 

immediate impact and in future translational potential for risk assessment. 
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Table 1.  Results of  ANOVA  modeling of the effect of time and strain on TCE metabolite  

concentrations in mouse serum.  

Metabolite Time 
point (hr) 

Sample 
size 

Partial R2 

("heritability") 
Strain: 

F 
Strain: 
p-value 

Time: 
F 

Time: 
p-value 

TCA 2 37 0.25 0.53 0.890 

8 36 0.63 2.51 0.028 

24 23 0.76 2.65 0.066 

All 0.18 1.24 0.263 59.00 <1E-10 

DCA 2 38 0.56 2.13 0.052 

8 36 0.58 2.09 0.061 

24 25 0.78 2.53 0.073 

All 0.22 1.69 0.075 6.19 0.003 

DCVG 2 36 0.82 6.62 0.00001 

8 33 0.89 8.88 <1E-10 

24 12 1.00 1376 0.021 

All 0.49 3.75 0.00009 40.50 <1E-10 

DCVC 2 32 0.60 1.83 0.118 

8 19 0.72 1.27 0.404 

24 8 0.74 0.48 0.801 

All 0.34 1.41 0.189 1.53 0.229 
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Table 2.  TCE metabolism parameters for B6C3F1/J  strain: median (2.5%, 97.5%) of posterior 

distribution.  

Parameter or prediction Abbreviation Value 

VMax for liver oxidation (mg/hr) VMax 2.1 (0.73, 5.6) 

KM for liver oxidation (mg/L) KM 3.3 (0.63, 19) 

VMax for liver GSH conjugation (mg/hr) VMaxDCVG 0.006 (0.003, 5.9) 

KM for liver GSH conjugation (mg/L) KMDCVG 0.06 (0.003, 9.8e4) 

VMax/KM for liver GSH conjugation (L/hr) Vmax/KM 0.1 (4e-5, 2.1) 

Dose (mg) [fixed] 76.4 

Amount of TCE metabolized (mg) AMetOx 16 (5.5, 60) 

Amount of TCE conjugated (mg) AMetGSH 0.05 (0.03, 0.5) 

Amount of TCA produced (mg) TotTCAProd 3.4 (1.4, 15) 

Amount of DCA produced (mg) TotDCAProd 0.3 (0.02, 3.7) 

Oxidation/GSH ratio (mg TCE oxidized/mg TCE conjugated) OXtoGSHRatio 290 (41, 1070) 

TCA/DCA ratio (mmol TCA produced/mmol DCA produced) TCAtoDCAratio 10 (0.9, 130) 
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Table 3. Comparison of Chiu et al. (2009) human variability predictions for TCE metabolism 

with variability predictions for TCE metabolism among mouse strains. Ratios of 95th 

percentile/50th percentile individual or strain are shown. Median estimate and 95% confidence 

interval were calculated at an oral dose of 0.001 mg/(kg d), where non-linearities in 

toxicokinetics are negligible. 

Parameter Human inter-individual variability 
(Chiu et al. 2009) 

Mouse interstrain variability 
(present analysis) 

TCE oxidized by P450 1.11 (1.05, 1.22) 1.05 (1.01, 1.27) 

Total TCA produced 2.09 (1.81, 2.51) 1.77 (1.36, 2.99) 

TCE conjugated with 
glutathione 

6.61 (3.95, 11.17) 7.12 (3.43, 20.66) 
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Figure Legends  

Figure 1. Top panel, Hack et al. (2006) TCE PBPK model simulation of TCA and DCA 

compared to the measured data [from (Kim et al. 2009b)] for the B6C3F1/J strain which was 

used in the original model development. Bottom panel, fits to TCA and DCA data [from 

(Bradford et al. 2011)] from a panel of inbred mouse stains. 

Figure 2. Schematic of the mouse PBPK model of TCE and its metabolites. The image has been 

modified from Chiu et al. (2009). 

Figure 3. Global evaluation of model fit, comparing toxicokinetic data (x-axis) and PBPK model 

predictions (y-axis), each with 95% confidence intervals. In some cases, the confidence interval 

on the data included 0, as indicated by horizontal error bars that extend all the way to the left. 

The solid grey diagonal line indicates where data and predictions are equal, and the dotted lines 

indicate where they are within 3-fold. 

Figure 4. Comparison of data (solid boxes with ±1 SD error bars) and PBPK model predictions 

(solid lines: interquartile range; grey area: 95% confidence interval) for TCE metabolites in 

B6C3F1 mice [data from (Kim et al. 2009b)]. 

Figure 5. (A) Hierarchical population statistical model for PBPK model uncertainty and 

variability. Square nodes denote fixed or observed quantities; circle nodes represent uncertain or 

unobserved quantities, and the PBPK model outputs are denoted by the inverted triangle. Solid 

arrows denote a stochastic relationship represented by a conditional distribution [AàB means 

B~P(B|A)], while dashed arrows represent a functional relationship [B = f(A)]. The population 

consists of studies i, each of which contains experiments or strains j, with exposure parameters 
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Eij, and data yij collected at times tij. The PBPK model produces outputs fij. The difference 

between data and predictions is assumed to have a distribution with variance σ2, which is 

assigned a prior distribution (Pr). The PBPK model uses non-strain-specific parameters θi, 

measured covariates φi, and strain-specific parameters ψj. The parameters are each drawn from 

population distributions with mean Mθ or ψ and variance Vθ or ψ, each of which are in turn assigned 

prior distributions. (B) Comparison of data (solid boxes with ±1 SD error bars) and PBPK model 

predictions (solid lines: interquartile range; grey area: 95% confidence interval) for two 

representative mouse inbred strains [data from (Bradford et al. 2011)]. 

Figure 6. Predictions for TCE metabolites and metabolite fluxes across mouse strains (median 

and 95% confidence interval). (A) TCA produced, DCA produced, and the ratio of TCA/DCA 

produced. (B) Flux of TCE metabolism through oxidation, flux through glutathione conjugation, 

and ratio of oxidation to glutathione conjugation. 

24
 



 25
 

 

  

Figure 1.  



 26
 

 

  

Figure 2.   



 27
 

 

  

Figure 3.  
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